Parameter estimation in a Holzapfel–Ogden law for healthy myocardium

نویسندگان

  • H. Gao
  • W. G. Li
  • L. Cai
  • C. Berry
  • X. Y. Luo
چکیده

A central problem in biomechanical studies of personalized human left ventricular (LV) modelling is to estimate material properties from in vivo clinical measurements. In this work we evaluate the passive myocardial mechanical properties inversely from the in vivo LV chamber pressure-volume and strain data. The LV myocardium is described using a structure-based orthotropic Holzapfel-Ogden constitutive law with eight parameters. In the first part of the paper we demonstrate how to use a multi-step non-linear least-squares optimization procedure to inversely estimate the parameters from the pressure-volume and strain data obtained from a synthetic LV model in diastole. In the second part, we show that to apply this procedure to clinical situations with limited in vivo data, additional constraints are required in the optimization procedure. Our study, based on three different healthy volunteers, demonstrates that the parameters of the Holzapfel-Ogden law could be extracted from pressure-volume and strain data with a suitable multi-step optimization procedure. Although the uniqueness of the solution cannot be addressed using our approaches, the material response is shown to be robustly determined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI

An unresolved issue in patient-specific models of cardiac mechanics is the choice of an appropriate constitutive law, able to accurately capture the passive behavior of the myocardium, while still having uniquely identifiable parameters tunable from available clinical data. In this paper, we aim to facilitate this choice by examining the practical identifiability and model fidelity of constitut...

متن کامل

A modified Holzapfel-Ogden law for a residually stressed finite strain model of the human left ventricle in diastole

In this work, we introduce a modified Holzapfel-Ogden hyperelastic constitutive model for ventricular myocardium that accounts for residual stresses, and we investigate the effects of residual stresses in diastole using a magnetic resonance imaging-derived model of the human left ventricle (LV). We adopt an invariant-based constitutive modelling approach and treat the left ventricular myocardiu...

متن کامل

An orthotropic active–strain model for the myocardium mechanics and its numerical approximation

In the wide literature devoted to the cardiac structural mechanics, the strain energy proposed by Holzapfel and Ogden exhibits a number of interesting features: it has suitable mathematical properties and it is based on few material parameters that can, in principle, be identified by standard laboratory tests. In this work we illustrate the implementation of a numerical solver based on such a m...

متن کامل

Constitutive modelling of passive myocardium

The objective of this final project is to demonstrate that during the past ten weeks, you have learned to read state of the art continuum mechanics literature. Gerhard Holzapfel and Ray Ogden, two leading scientists in continuum biomechanics, have recently published a manuscript that introduces a new continuum mechanics model for passive cardiac muscle tissue. 1 Read the publication and try to ...

متن کامل

Adjoint multi-start-based estimation of cardiac hyperelastic material parameters using shear data

Cardiac muscle tissue during relaxation is commonly modeled as a hyperelastic material with strongly nonlinear and anisotropic stress response. Adapting the behavior of such a model to experimental or patient data gives rise to a parameter estimation problem which involves a significant number of parameters. Gradient-based optimization algorithms provide a way to solve such nonlinear parameter ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2015